ลักษณะและปริมาณของกลุ่มตัวอย่าง

แนวคิด  ทฤษฎีหรือหลักการ

 

         ประชากร  (Population)  หมายถึง  สิ่งต่าง ๆ ที่เราสนใจที่จะศึกษา  เช่น  คน  สัตว์  หรือสิ่งของก็ได้  ซึ่งมี ทั้งลักษณะรู้จบและ  ไม่รู้จบ

         กลุ่มตัวอย่างกลุ่ม(Sample)หมายถึง  เป็นส่วนหนึ่งของประชากรที่ผู้วิจัยสนใจ กลุ่มตัวอย่างที่ดีหมายถึงกลุ่มตัวอย่างที่มีลักษณะต่างๆที่สำคัญครบถ้วนเหมือนกับกลุ่มประชากร เป็นตัวแทนที่ดีของกลุ่มประชากรได้

         การเลือกกลุ่มตัวอย่างเพื่อเป็นตัวแทนของประชากรนั้นมีอยู่สองหลักการใหญ่คือ 1) หลักการอาศัยความน่าจะเป็น (probability sampling) หรือการเลือกอย่างสุ่ม (random selection) ซึ่งเป็นหลักการที่สมาชิกของประชากรแต่ละหน่วยมีความน่าจะเป็นในการถูกเลือกเท่าๆกันและทราบความน่าจะเป็นนั้น  2) ไม่ใช้หลักการความน่าจะเป็น (nonprobability sampling)  เป็นการเลือกกลุ่มตัวอย่างที่ความน่าจะเป็นในการถูกเลือกของแต่ละหน่วยตัวอย่างไม่เท่ากัน หรือบางหน่วยมีโอกาสที่จะไม่ถูกเลือก

ดังนั้นในการจะเห็นได้ว่าในการที่จะได้ว่าถ้าเราเลือกกลุ่มตัวอย่างโดยอาศัยหลักความน่าจะเป็น จะทำให้การประมาณค่าพารามิเตอร์ได้แม่นยำกว่า

ขั้นตอนการเลือกกลุ่มตัวอย่าง

  • กำหนด/นิยามประชากรเป้าหมาย
  • รวบรวมสมาชิกทั้งหมดของประชากร
  • กำหนดหน่วยของการสุ่มตัวอย่าง
  • วางแผนการเลือกกลุ่มตัวอย่าง
  • ทำการเลือกกลุ่มตัวอย่าง

การกำหนดขนาดกลุ่มตัวอย่าง

1. กำหนดกลุ่มตัวอย่างโดยใช้เกณฑ์

    • จำนวนประชากรหลักร้อยใช้กลุ่มตัวอย่าง 15 – 30%
    • จำนวนประชากรหลักพันใช้กลุ่มตัวอย่าง 10 – 15%
    • จำนวนประชากรหลักหมื่นใช้กลุ่มตัวอย่าง 5 – 10 %

2.ใช้สูตรคำนวณ

2.1 กรณีไม่ทราบค่าพารามิเตอร์ ไม่ทราบจำนวนประชากร ทราบเพียงแต่ว่ามีจำนวนมาก

2.2 กรณีที่ทราบจำนวนประชากรและมีจำนวนไม่มาก

 เทคนิคการสุ่มกลุ่มตัวอย่าง

1.การสุ่มโดยไม่คำนึงถึงความน่าจะเป็น

          ในบางครั้งการเลือกกลุ่มตัวอย่างโดยอาศัยความน่าจะเป็น โดยวิธีการสุ่มอาจจะไม่สามารถทำได้หรือทำได้ยาก การเลือกกลุ่มตัวอย่างโดยไม่อาศัยความน่าจะเป็นจึงถูกนำมาใช้ซึ่งการเลือกกลุ่มตัวอย่างแบบนี้จะมีลักษณะเป็นอัตวิสัย (subjective) ซึ่งมักจะทำให้การประมาณค่าพารามิเตอร์ขาดความแม่นยำ ดังนั้นในการเลือกกลลุ่มตัวอย่างแบบนี้มักจะใช้เมื่อไม่ต้องการอ้างอิงถึงลักษณะประชากร ส่วนใหญ่จะใช้กับงานวิจัยสำรวจข้อเท้จจริง (Exploration research) กับกลุ่มที่มีลักษณะเฉพาะและไม่ต้องการเปรียบเทียบกับกลุ่มอื่นๆ นอกจากนี้ยังมีเหตุผลทางด้านค่าใช้จ่ายและเวลา เพราะการเลือกตัวอย่างโดยไม่อาศัยความน่าเป็นจะมีค่าใช้จ่ายและเวลาน้อยกว่าอาศัยความน่าจะเป็น

1.1 การสุ่มโดยบังเอิญ (Accidental sampling) เป็นการสุ่มจาก

                 สมาชิกของประชากรเป้าหมายที่เป็นใครก็ได้ที่สามารถให้ข้อมูลได้ครบถ้วน การสุ่มโดยวิธีนี้ไม่สามารถรับประกันความแม่นยำได้ ซึ่งการเลือกวิธีนี้เป็นวิธีที่ด้อยที่สุด เพราะเป็นการเลือกตัวอย่างที่มีลักษณะสอดคล้องกับนิยามของประชากรที่สามารถพบได้และใช้เป็นอย่างได้ทันที

1.2 การสุ่มแบบโควตา (Quota sampling) เป็นการสุมตัวอย่างโดยจำแนก

                 ประชากรออกเป็นส่วนๆก่อน (strata)โดยมีหลักจำแนกว่าตัวแปรที่ใช้ในการจำแนกนั้นควรจะมีความสัมพันธ์กับตัวแปรที่จะรวบรวม หรือตัวแปรที่สนใจ และสมาชิกที่อยู่แต่ละส่วนมีความเป็นเอกพันธ์ ในการสุ่มแบบโควตา นี้มีขั้นตอนการดำเนินการดังนี้

1.2.1 พิจารณาตัวแปรที่สัมพันธ์กับลักษณะของประชากรที่คำถามการวิจัยต้องการที่จะศึกษา เช่น เพศ ระดับการศึกษา

1.2.2 พิจารณาขนาดของแต่ละส่วน(segment)ของประชากรตามตามตัวแปร

1.2.3 คำนวณค่าอัตราส่วนของแต่ละส่วนของประชากร กำหนดเป็นโควตาของตัวอย่างแต่ละกลุ่มที่จะเลือก

1.2.4 เลือกตัวอย่างในแต่ละส่วนของประชากรให้ได้จำนวนตามโควตา

1.3 การสุ่มตัวอย่างเฉพาะเจาะจง (purposive sampling) หรือบางครั้ง

                 เรียกว่าการสุ่มแบบพิจารณา (judgment sampling) เป็นการสุ่มตัวอย่างโดยใช้ดุลพินิจของผู้วิจัยในการกำหนดสมาชิกของประชากรที่จะมาเป็นสมาชิกในกลุ่มตัวอย่าง ว่ามีลักษณะสอดคล้องหรือเป็นตัวแทนที่จะศึกษาหรือไม่ ข้อจำกัดของการสุ่มตัวอย่างแบบนี้คือไม่สามารถระบุได้ว่าตัวอย่างที่เลือก จะยังคงลักษณะดังกล่าวหรือไม่เมื่อเวลาเปลี่ยนไป

1.4 การสุมกลุ่มตัวอย่างตามสะดวก (convenience sampling) การเลือกกลุ่ม

                 ตัวอย่างโดยถือเอาความสะดวกหรือความง่ายต่อการรวบรวมข้อมูล ข้อจำกัดของการสุ่มแบบนี้จะมีลักษณะเหมือนกับการสุ่มโดยบังเอิญ

         1.5 การสุมตัวอย่างแบบสโนว์บอลล์ (snowball sampling) เป็นการเลือกตัวอย่างในลักษณะการสร้างเครือข่ายข้อมูล เรียกว่า snowball sampling โดยเลือกจากหน่วยตัวอย่างกลุ่มแรก (จะใช้หรือไม่ใช้ความน่าจะเป็นก็ได้) และตัวอย่างกลุ่มนี้เสนอบุคคลอื่นที่มีลักษณะใกล้เคียงต่อๆไป

 ข้อจำกัดของการสุ่มโดยไม่อาศัยความน่าจะเป็น

1. ผลการวิจัยไม่สามารถอ้างอิงไปสู่ประชากรทั้งหมดได้ จะสรุปอยู่ในขอบเขตของกลุ่มตัวอย่างเท่านั้น ข้อสรุปนั้นจะสรุปไปหาประชากรได้ต่อเมื่อกลุ่มตัวอย่างมีลักษณะต่างๆที่สำคัญๆเหมือนกับประชากร

2. กลุ่มตัวอย่างที่ได้นั้นขึ้นอยู่กับการตัดสินใจของผู้วิจัยและองค์ประกอบบางตัวที่ไม่สามารถควบคุมได้ และไม่มีวิธีการทางสถิติอย่างไรที่จะมาคำนวณความคลาดเคลื่อนที่เกิดจากการสุ่ม (sampling error)

 2. การสุ่มโดยการคำนึงถึงความน่าจะเป็น(probability sampling)

2.1 การสุ่มอย่างง่าย (Simple random sampling)

           สมาชิกทั้งหมดของประชากรเป็นอิสระซึ่งกันและกัน แล้วสุ่มหน่วยของการสุ่ม (Sampling unit) จนกว่าจะได้จำนวนตามที่ต้องการ โดยแต่ครั้งที่สุ่ม สมาชิกแต่ละหน่วยของประชากรมีโอกาสถูกเลือกเท่าเทียมกัน ซึ่งก่อนที่จะทำการสุ่มนั้น จะต้องนิยามประชากรให้ชัดเจน ทำรายการสมาชิกทั้งหมดของประชากร สุ่มตัวอย่างโดยใช้วิธีที่ทำให้โอกาสในการของสมาชิกแต่ละหน่วยในการถูกเลือกมีค่าเท่ากัน ซึ่งสามารถทำได้ 2 วิธี คือ

2.1.1 การจับฉลาก

         2.1.2 การใช้ตารางเลขสุ่ม (table of random number) ซึ่งตัวเลขในตารางได้มาจากการอาศัยคอมพิวเตอร์กำหนดค่า หรือบางครั้งสามารถใช้วิธีการดึงตัวอย่างโดยอาศัยโปรแกรมสำเร็จรูป

         ในการสุ่มอย่างง่าย มีข้อจำกัดคือ ประชากรต้องนับได้ครบถ้วน (finite population) ซึ่งบางครั้งอาจสร้างปัญหาให้กับนักวิจัย

 2.2 การสุ่มแบบเป็นระบบ (systematic sampling)

ใช้ในกรณีที่ประชากรมีการจัดเรียงอย่างไม่ลำเอียง

1) ประชากรหารด้วยจำนวนกลุ่มตัวอย่าง (K = N/n)

2) สุ่มหมายเลข 1 ถึง K (กำหนดสุ่มได้หมายเลข r )

3) r จะเป็นหมายเลขเริ่มต้น ลำดับต่อไป r + K, r +2K, r + 3K, …..

           การสุ่มแบบเป็นระบบ โอกาสถูกเลือกของตัวอย่างไม่เป็นอิสระจากกัน เพราะเมื่อตัวอย่างแรกถูกสุ่มแล้ว ตัวอย่างหน่วยอื่นก็จะถูกกำหนดให้เลือกตามมาโดยอัตโนมัติ โดยไม่มีการสุ่ม

3. การสุ่มแบบแบ่งชั้น (stratified random sampling)

           เป็นการสุ่มกลุ่มตัวอย่างที่แบ่งกลุ่มประชากรออกเป็นกลุ่มย่อย (subgroup or strata) เสียก่อนบน พื้นฐานของตัวแปรที่สำคัญที่ส่งผลกระทบต่อตัวแปรตาม โดยมีหลักในการจัดแบ่งกลุ่มแต่ละกลุ่มมีความเป็นเอกพันธ์ (Homogeneous) หรือกล่าวได้ว่า ในกลุ่มเดียวกันจะมีลักษณะคล้ายคลึงกันตามกลุ่มย่อยของตัวแปร แต่จะมีความแตกต่างระหว่างกลุ่ม จำนวนสมาชิกในกลุ่มย่อยจะถูกกำหนดให้เป็นสัดส่วน (proportion) ตามสัดส่วนที่ปรากฏในประชากร ซึ่งเรียกว่า การสุ่มแบบแบ่งชัดโดยใช้สัดสัด (proportion stratified sampling) การสุ่มแบบแบ่งชั้นจะมีความเหมาะสมกับงานวิจัยที่สนใจความแตกต่างของลักษณะประชากรในระหว่างกลุ่มย่อย

4.การสุ่มตัวอย่างแบบกลุ่ม (cluster sampling)

          ในกรณีที่ประชากรมีขนาดใหญ่ การสุ่มกลุ่มตัวอย่างโดยจัดกระทำกับรายการสมาชิกทุกๆหน่วยของประชากรอาจทำได้ยากหรือทำไม่ได้เลย ดังนั้นแทนที่จะใช้วิธีการสุมจากทุกหน่วย นักวิจัยสามารถสุ่มจากกลุ่มที่ถูกจัดแบ่งไว้อยู่แล้ว ซึ่งวิธีการแบบนี้เรียกว่าการสุ่มแบบกลุ่ม (cluster sampling) สิ่งที่ควรคำนึงถึงการสุ่มแบบกลุ่ม มีดังนี้ (เชิดศักด์ โฆวาสินธ์.2545 : 62)

4.1 ความแตกต่างของลักษณะที่จะศึกษาระหว่างกลุ่ม (cluster) มีไม่มาก หรือเรียกว่ามีความเป็นเอกพันธ์ (homogeneous)

4.2 ขนาดของแต่ละกลุ่ม เท่ากันหรือแตกต่างกันไม่มากนัก เพราะเมื่อเลือกกลุ่มมาเป็นตัวอย่างแล้ว การประมาณค่าพารามิเตอร์ จะมีลักษณะไม่อคติ (unbias estimation) มากกว่า กรณีที่กลุ่มตัวอย่างในแต่กลุ่มมีขนาดแตกต่างกันมาก

4.3 ขนาดของกลุ่ม (cluster) ไม่มีคำตอบแน่นอนวาจำนวนหน่วยตัวอย่างที่ศึกษาในแต่ละกลุ่ม จะเป็นเท่าใด ขึ้นอยู่กับคำถามการวิจัยและความยากง่ายในการเก็บข้อมูล

4.4 การใช้วิธีการสุมแบบ multistage cluster sampling แท่นการใช้ single – stage มีเหตุผลดังนี้

 ขนาดของแต่ละกลุ่ม ที่มีอยู่มีขนาดใหญ่เกินไปเกินกว่าขนาดตามกำหลังทางเศรษฐกิจ

 สามารถหลีกเลี่ยงค่าใช้จ่ายที่เกิดขึ้นจากการแบ่งกลุ่ม ให้มีขนาดเล็กลงในแต่ละกลุ่ม

 ผลของการแบ่งกลุ่ม (clustering) แม้จะมีขนาดเล็กลงแต่ในระหว่างกลุ่มที่จะศึกษายังมีความแตกต่างกันไม่มากนัก

 การเลือกตัวอย่างของ compact cluster ให้ความยุ่งยากในกาเก็บรวบรมข้อมูล

          4.5 ขนาดขอกลุ่มตัวอย่างหรือจำนวนกลุ่ม (cluster) ที่ต้องการในการเทียบเคียงจากการเลือกแบบการสุ่มอย่างง่าน (simple random sampling) ในการคำนวณขนาดกลุ่มตัวอย่าง โดยใช้จำนวนทั้งหมดของกลุ่ม ที่จัดแบ่งเป็นประชาการที่นำมาใช้ในการคำนวณ

5. การสุ่มแบบหลายขั้นตอน (multi-stage sampling)

เป็นกระบวนการสุ่มกลุ่มตัวอย่างจากประชากรซึ่งดำเนินการสุ่มตั้งแต่ 3 ขั้นขึ้นไป

       

ตัวอย่าง 

 

         หัวข้อการวิจัย  : การสร้างแบบฝึกทักษะการอ่านคำที่ใช้อักษร  ร  ล  ว  ควบกล้ำ  สำหรับนักเรียนชั้นประถมศึกษาปีที่  6

         กลุ่มตัวอย่าง  :   นักเรียนที่กำลังเรียนอยู่ชั้นประถมศึกษาปีที่  6  ห้อง  ก และห้อง  ข  โรงเรียนบ้านหนองฮี  สปจ.  ขอนแก่น  จำนวน  60  คน  ใช้เป็นกลุ่มทดลองทั้งหมด  60  คน

subscribe

กิจกรรม

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: